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Abstract. A new and general analytic method for calculating finite-size corrections and 
central charges is applied to the 6- and 19-vertex models and their related spin-; and 
spin-1 XYZ chains with twisted boundary conditions. Nonlinear integral equations are 
derived from which the central chargee can be extracted in terms of Rogen dilogarithms. 
For twist angle Q2 the central charge is 

where y is the crossing parameter or chain anisotropy and spin S = 4 or 1. For 
pericdic boundary conditions (Q = 0) this reduces to the known results c = 1 and c = i, 
respectively. 

1. Introduction 

The. critical behaviour of many two-dimensional statistical systems is described by 
unitary conformal field theories and classified by the central charge of the Virasoro 
algebra of conformal transformations [l,  21. The central charge and scaling dimen- 
sions can be extracted from the finite-size behaviour of the eigenvalue spectrum of 
the transfer matrix of the statistical system or its related (l+l)-dimensional quantum 
spin chain [MI. 

These developments have led to a rapid growth of interest in calculating finite-size 
corrections in exactly solvable models. For models solvable via the Bethe ansatz, de 
Vega and Woynarovich [7] have given a procedure for deriving finite-size corrections 
using root densities. Their method has been succesfully applied to a number of mod- 
els. Chief among these is the 6-vertex model [SI and the related (l+l)dimensional 
spin-; XYZ chain [9] due to their central role in the family of exactly solved models 
(see, e.g., [ 1CL121 and references therein). Notwithstanding, the finite-size corrections 
to the eigenspecuum of the more general (2s + 1)-state vertex models and related 
sp ins  X m  chains (see, e.g., [13-17) have not been calculated exactly for S 3 1 by 
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these methods. This is the case for these models despite the fact that the central 
charge in the antiferromagnetic region is known to be 

for values of the crossing parameter or chain anisotropy 7 in the range 0 < y < rr/2S. 
This result has been obtained (4, 181 from the low-temperature asymptotics of the 
specific free energy [15-171 and is supported by direct numerical solutions of the 
Bethe ansatz equations for small values of S and finite chains [1%20]. 

At the heart of the difficulties in the higher-spin models is the nature of the 
complex roots of the Bethe-ansatz equations which admit a sea of =-strings to 
describe the ground state. Although some progress has been made in calculating the 
asymptotic finite-size deviation to the imaginary part of the roots [2l] for such ground 
states, the analytic calculation of the leading finite-size corrections and the central 
charge remains open. 

Recently a new method for the analytic calculation of finite-size corrections, cen- 
tral charges and scaling dimensions of exactly solvable lattice models has been in- 
troduced [22]. This method uses integral equations, avoids the use of root densities 
and promises much wider applicability. In this paper we bring to fruition such an 
approach, as initiated in [23], to calculate the central charges of the 6- and 19-vertex 
models and their related spin chains. 

The results for the quantum spin chains are obtained as a special limiting case of 
the results for the corresponding vertex model. Specilically, the energy-momentum 
spectrum of a quantum spin chain is given in terms of the eigenvalues of the transfer 
matrix T ( v )  of the related two-dimensional lattice model by the Hamiltonian limit 

H = constant (In T ) ’ ( v J ,  P = i(ln T)(v , )  (1.2) 

where vu is a value of the spectral parameter at which the transfer matrix reduces to 
the shift operator. The advantage of working with the more general lattice models 
is that complex analysis can be used since then the eigenvalues A(v) of T ( v )  depcnd 
analytically on the spectral variable 1,. 

The layout of the paper is as follows. We begin with the  treatment of the 6-vertex 
model in section 2. The method is then extended to the 19-vertex model in section 
3. Some concluding remarks are given in section 4. 

2. Central charge of the 6-vertex model 

In this section we calculate the central charge of the 6-vertex model and the related 
spin-f XXZ chain with twisted boundary conditions. We first define the critical 6- 
vertex model and present the Bethe ansatz eigenvalue equations, focussing on the  
largest eigenvalue. Using Cauchy’s theorem and other complex variable theory we 
recast the eigenvalue equation in the form of a nonlinear integral equation which is 
exact for all finite system sizes N. This equation may be regarded as a partial solution 
of the problem since the bulk behaviour of the eigenvalue A can be read off directly. 
Although we have not been able to solve this nonlinear integral equation analytically 
it is straightfoward to solve it numerically. Fortunately, the 1/N corrections can be 
obtained without explicitly solving the nonlinear integral equation. 



Central charges of vertex models 3113 

01 

Figure 1. Labelling of the R-matrix and Boltzmann weight associated with a vertex with 
bond spins o,P ,y ,S  and spectral parameteru. 

2.1. The 6-vertex model and spin-; XXZ chain 

The 6-vertex model iq defined on a square lattice. Each bond or edge of the lattice 
carries an arrow or spin variable which takes the values hi. The Boltzmann weight 
of a vertex, with spins a, p, 7 , 6  on the lower, upper, left and right bonds respectively, 
is given by the R-matrix R{ : ( U )  as shown in figure 1. The only non-zero weights are 

and those related to these by the symmetries 

(2.2) 

(2.3) 

R! !,(U) = RI, P - 6  - . , (U) = R!, ! ( U )  = R i  ; ( U )  

R! !,(U) = Rt :",A - U ) .  

and the crossing symmetry 

There are thus precisely six allowed vertices. The argument U is called the spectral 
parameter and X is the crossing parameter. The 6-vertex model is critical for imagi- 
nary values of X = -i7 with y E [0, r). For convenience we will often work with the 
shifted spectral parameter 

v = U - X/2 = U + iy/2. 
The 6-vertex model possesses a U( 1) symmetry, i.e. an invariance under rotations 

in spin space around the L axis. Therefore it is possible to study modified boundary 
conditions preserving exact integrability. We introduce a seam on the horizontal 
bonds linking column N to column 1. With each of these bonds we associate a local 
operator exp(2iqW) = Diag(e'$,e-'$) changing the vertex weights in column N to 

In the following we will reler to 4 as the twist angle. 
The Hamiltonian limit of the row transfer matrix T(v )  of the 6-vertex model is 

taken at v, = -i7/2 or U = X as in (1.2). Normalizing by (i/2)siny and subtracting 
the constant (N/2) cos7, we find the  Hamiltonian of the related spin-; XXZ chain is 

(2.4) , Z i 6 + ~ 0  6 
a 7 (  ). 

N 

H m z  = C[.ys;,, +qS;+l +cosy s;53 

F~,,, = S; s,,, * = s;,, + sLt l  = 

(2.5) 
j=1  

where $,?? are the usual spin-f operators and twisted boundary conditions have been 
imposed as in [24] 

(2.61 1 '  
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2.2. Bethe-aman equations 

We recall that each eigenvalue A(v) of the transfer matrix of the 6-vertex model 
satisfies the functional equation [25] 

A(v)q(v) = w-'@(v - iy/2)q(v + iy) + wO(v + iy/2)q(v - iy) (2.7) 
where @(v) and q(v) are defined by 

m 

@(v) := (sinhv)N q(v) := n s i n h ( v -  v,) 
j=1 

and 

w = ei+ (2.9) 

is an additional phase factor due to the twist. The unknown function q ( v )  is the 
eigenvalue of an auxiliary family of transfer matrices commuting with T(v). It is 
determined by its zeros vi in the complex v plane. 

Once the Bethe ansatz numbers v- i e the zeros of the function q ( v ) ,  are known 
I' ' ' the eigenvalue A can readily be obtained froIn(2.7). The numbers vi have to satisfy 

a set of coupled nonlinear equations, the so-called Bethe ansatz equations, 

p(v,) = -1 j=1,  . . . ,  m (2.10) 

where the functionp(v) is defined by 

1 O(v - iy/2)q(v + iy) 
U* O(v + iy/2)q(v - iy) ' 

p(v) := - (2.11) 

For the largest eigenvalue, these zeros are distributed along the real axis. 

2.3. Nonlinear integral equation 

The derivation of bulk properties is usually achieved by introducing a density function 
p for the distribution of v, on the real axis. From (2.10) a linear integral equation for 
p is then derived which can be soived by Fourier transiorms. it is not easy to rake 
into account finite-size corrections within this approach. Instead our approach is to 
take advantage of the fact that (2.10) renders A(v) to be analytic. 

We will consider systems where the finite size N is even and restrict ourselves to 
the study of the 'ground state' which admits M = N/2  real Bethe ansatz numbers. As 
an immediate consequence we note the following symmetry properties 

(2.12) 

where the bar denotes complex conjugation. Next we give some analyticity domains 
of the functions @(v), q(v), A(v), i.e. the strips in the complex plane where these 
f,,ctb.. prp n,<n&- 8.d ,<g,c;..rg la?.I7\ \' .. ", 

@(v) 
q(v)  ANZ in - T < Im(v) < 0 (2.13) 

A(v) 

ANZ in 0 < Im(v) < T 

ANZ in - y/2 < Im(v) < y/2. 
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We remark that the analyticity domains are by no means unique since all functions 
are ai-periodic. For A(v) the analyticity strip follows [26] from the bulk behaviour 
and a corollaly of Cauchy’s theorem. We will take this procedure as a reliable guide 
for identifying analyticity domains throughout the paper. We therefore know that, 
although the domain of analyticity can depend on 7. the (maximal) analyticity Strip 
of A(v) is an open set containing the strip given in (2.13) and this is sufficient for 
our purposes. The analysis we present is applicable, in principle, to the whole regime 
0 < y < T. For the sake of a simple presentation, however, we restrict ourselves to 
0 < y < a/2. A simple but tedious modification also covers the regime a /2  < y < A. 

The purpose of this subsection is to  derive an integral equation for the functions 
a(x) and % ( x )  defined by 

a(x) := l / p ( x  - iy/2) = [tanh ( g ) ] N a ( x )  
(2.14) 

%(x) := 1 + a @ ) .  

These functions are central to our subsequent analysis. We have anticipated the bulk 
behaviour of a@) and introduced a function a(x)  to account for corrections. This will 
simplify some calculations, but it is not essential. The variable x may be regarded as 
real. However, sometimes it is more convenient to work with values ofx in the upper 
half plane close to the real axis. This convention will avoid singularities which might 
otherwise occur. 

We will often perform the Fourier transform Fku) of a complex function f (v) 
which is analytic in a certain strip and decays sufficiently fast. We define the Fourier 
transform pair 

(2.15) 

where the integration path of the first integral has to lie in the analyticity strip and 
the real part of the variable of integration has to vary from -00 to 00. By Cauchy’s 
theorem all other details of the path are irrelevant for &U]. 

We first apply the Fourier transform to the definition of a(x )  

(2.16) a(x) = wz [coth ( : ) IN a(x) 4(x - fiY/2) 
@(x + i s  - iy) q(x + iy/2 - ia) 

where we have used the ai-periodicity to reduce all arguments of the functions Q(v)  
and q(v) to the analyticity strips (2.13). We observe that the asymptotic behaviour af 
these functions is given by exponentials so that the second logarithmic derivatives can 
be Fourier transformed. After a few manipulations this yields 

(2.17) 
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We next define an auxiliay function h(v) 

which enjoys a non-trivial ANz property 

h(v) ANZ in - y/2 < Im(v) < y/2. 

This property follows from (2.13) and the relationship with A(v) 

1 
h(v) = - 

w @(v + iy/2)q(v - iy) 

(2.18) 

(2.19) 

(2.20) 

'b proceed, we calculate the Fourier transform of the second logarithmic deriva- 
tive of h in two different ways. We choose integration paths with imaginaly parts +y/2 
and two different representations such that the arguments of q lie in the analyticity 
strip (2.13, 

From these two equations we derive two formulae for Fk [ Inh]", 

which can be equated, yielding 

x Fk[ lnu ]" -NFk  [ Incoth (E)]" + e+Fk[~niii]" - Fk [ ~ n ~ l " ] .  

(2.23) 

Note that this is a non-trivial identity in contrast to (2.17) which is simply a result of 
the definition of U @ ) .  The essential ingredient of (2.23) is the ANZ property Of A(v) 
which, for the largest eigenvalue, is equivalent to the set of Bethe-ansatz equations. 
Equations (2.17) and (2.23) can be solved for Fk[Inul" and Fk[Inq]"  in terms of 
F,.[ln'U]'' and Fk[ln%]", giving 

[ 
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Here we have used (Al.l) to evaluate the Fourier transforms of the hyperbolic 
functions and have introduced an infinitesimally small E > 0 which can be regarded as 
the imaginaly part of the argument of x. It effectively does not change the right-hand 
side of (2.24) and renders the prefactor of Fk [ In%]" integrable. 

We now apply the inverse Fourier transform to (2.24) where the product on the 
right-hand side turns into a convolution of the transforms of the individual factors, 

r im n(..\i'/ - I" [,rb; [jsm;" (x -y j  - Fii; + iE ' - ' 1 r 3 - a "  L,,, ~, (x  - yj; dy 
L'L.U,*,, - 

where the function 

I? ?L\ 
(L.LV, J- m 

ek dk 
sinh(4a - y)k  

F ( x )  := - 2a Jm -,,, Zcosh($yk)sinh[f(n- y)k] 

satisfies the relations 

F(z) = F(-f), F ( - z )  = F ( z )  

(2.27) 

(2.28) 

We integrate (2.26) twice to obtain 

h a @ )  = Jm {F(y)In(!2l(x - y ) ]  -FCy+ k - iy)ln [(U(" - y ) ] )  dy+ C+&. (2.29) 

The integration constants are determined by looking at the asymptotic behaviour for 

-m 

X - m  

/ rm 
Ina(m) = (j- F(y)dy 

m 

(2.30) 

Now a(x )  has the same asymptotic behaviour as a@), 

d+m) = U(*=) 1 + "2 
-\---, ~ - 

from which we derive 

ni+4 

= - 7  
C=- D = 0. 

Recalling (2.14), we then obtain the following integral equation for a(x) 

In a(x) = N In [ranh (E)] 
m 

[Fb) In (Z(x -y)) - F(y + i E  - iy) In%@ -y)] dy 
+ 1, 

aid +- 
a - 7  

(2.31) 

(2.32) 

(2.33) 

which is nonlinear because of the condition II = 1 + a. This equation is exact for all 
finite system sizes N. 
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2.4. Finite-sue correctionr to the largest eigenvalue 

Once the solution of (2.33) is known the eigenvalue A can be calculated from 

(2.34) 

The contribution given by the quotient of the q-functions is evaluated by taking the 
Fourier transform and then inserting (2.25) 
- 

F,[I~zI]" sinh[f(n - y)k] e(T-cP eck = Nk +- F ~ [ [ I ~ G ~ ] " -  - 
2s inh (~xk)cosh (~yk)  e7* + 1 e+ + 1 

(2.35) 

The infinitesimally small c > 0 was introduced for the same reason as in (2.24). 
Applying the inverse transform, using (A1.2) and finally integrating we then obtain 

(2.36) 

where C and D are constants of integration. Again from the asymptotic behaviour, 
we find 

(2.37) 

where the constants are determined as 

C = l n w  D = O .  (2.38) 

dk sinh[f(r - y)k]sin(xk) J -m ?ksinh(fnk)cosh($yk) 
In A(x - iy/2) = In @(x - iy) - N i  

(2.39) 

where the bulk behaviour is entirely contained in the first line and the finite-size 
corrections are given in terms of the ZI function alone. Again this equation is exact 
for all finite system sizes N. 
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2.5. Analytic calculation of l /N corrections 

'Ib handle the asymptotic behaviour of A(v) in the thermodynamic limit we observe 
the following scaling behaviour 

(2.40) 

Numericaily a(x) is found to scale similarly. We therefore define appropriate limiting 
functions in the positive and negative scaling regimes and introduce a shorthand 
notation for their logarithms, 

a*@) := N-CC lim a ( X  -t (x+InN))  

~ + ( x )  := lim II (+z(x + InN)) = 1 +a,(x) 

In the scaling regimes the integral equation (2.33) simplifies to 

la,(x) := Ina,(x) (2.41) 

U,(x) := InA,(x). (2.42) 
N-m 7r 

- xi4 lu,(x) = -2e-' + F, t U, - Fz t U, + - 
" - 7  

where F, and Fz are defined by 

(2.43) 

(2.44) 

and f t g  denotes the convolution of two functions f and g 

(f *g)(x) := J_,f(x -y)gb)  dY. 
m 

(2.45) 

It will be useful to  treat the functions la, and their complex conjugates I, on an 
equal footing. Hence we obtain from (2.43) the following integral equation 

where the kernel 

satisfies an important symmetry property 

KT@ -x )  = K(x -y) 

which will turn out to be crucial in further manipulations of (2.46). 
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Let us now consider the leading finite-size corrections to the eigenvalue A(v). 
First splitting the integral in (2.39) into two parts, then substituting the variable of 
integrationy by +z(y+  InN) and finally introducing the scaling functions, we derive 

i Jm Reln[ll(y)] d y = i $  [ ReIn{'U [r/r(v + InN)]) 
y -,sinh[a/y(x-y+k)] 7r -1" s inh( r rx /y-y- lnN+k)  

(2.49) 

Anticipating the fact that, due to symmetry, both integrals in (2.49) yield the same 
value and using (2.39) we obtain 

rri , 
InA(x - iy/2) Y -Nf(x - iy/2) - - s i n h ( m / y ) z  O0 RelA,(y)e-Ydy. (2.50) 

In principle the nonlinear integral equation (2.43) has to be solved for U * .  In the 
:...." -^-^_ rn-1 .I.:- ... ~" "",..-A -..- ..-: ,,-,,.. U ,.... F",,"...:"" r??, ...- 

p C Y 1 " u J  p'lpc, LLJJ L l l W  C'1ULL1"'L _'la D","C" ,,Y,,,.,,,M,,~. 1.".TU.U,, L""".T."6 ,AA,, -I 

are now able to calculate the integral in (2.50) without explicitly solving the integral 
equation. 

6N x2 1, 

We begin by differentiating (2.46) with respect to x 

(2.51) 

-, 
Multiplying (2.51) with U,, a, and (2.46) with M i ,  lA,, subtracting and lastly 
integrating we obtain 

(2.52) 

where the contributions of the kernel K cancel due to the symmetry (2.48) as shown 
in appendix 1. After integrating by parts, the right-hand side of (2.52) is recognized 
essentially as the required integral in (2.50). On the other hand, the integral on the 
left-hand side of (2.52) can be calculated after changing the variable of integration x 
to a and ii 
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2 r r p  
= 2L+ (w’) + 2Lt (w-2) - - 

=--I 

(2.53) 

where the asymptotics, e.g. a+(co) = w2 ii*(m) = w - ~  A*(m) = 1 + w 2  and 
A*(m) = ]+U-*, have been read off from (2.31) and (2.42). In (2.53) we introduced 
the dilogarithmic function 

(2.54) 

where L(z )  is the Rogers dilogarithm (271. We have further used the functional 
equation (271 

L,(z)+L,(l/z)= rr2/6. (2.55) 

We are now able to give the explicit result for (2.50) in two ways 

In A(x - iy/2) N -Nf (x - iy/2) - 
6N Y 

and 
R In A(v) Y -Nf ( v )  + - cosh 

6N Y 
from which the central charge is easily identified as (see, e.g. [6]) 

W2 
4 n  - Y) 

c = l -  

(2.56) 

(2.57) 

(2.5s) 

for + E (-n/2, ./2) in agreement with earlier numerical 1241 and analytic [ll] calcu- 
lations. 

3. Central charge of the 19-vertex model 

In this section, which is the main part of the paper, we treat the 19-vertex model and 
the related spin-1 XXZ quantum chain (131. The ideas developed in the  preceding 
section for the 6-vertex model are directly applicable, allowing us to follow the given 
outline quite closely. 

The 19-vertex model can be obtained from the 6-vertex model by a fusion pro- 
cedure (see e.g. 1171 and references therein). In the same way, higher spin vertex 
models and related quantum spin chains can be constructed. We will, however, re- 
strict ourselves to the first such model and concentrate on giving a clear presentation 
of the method in this case. A few hints concerning the general case will be given in 
passing. 
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3.1. The 19-verter model and spin-1 xr(z chain 

The 19-vertex model is defined similarly to the 6-vertex model only now the bonds 
carry spin-1 variables taking the values 0 , f l .  The non-zero vertex weights are 

R! ;(U) = sinh(X - U )  sinh(2X -U) 
RI - ;;(U) = sinhXsinh2X 

Rh :(U) = sinh2X sinh(X - U) 

Ri ;(U) = sinhXsinh2X - sinhu sinh(X - U )  

R! !(U) =sinhusinh(X - U )  (3.1) 

and those related to  these by the symmetries (2.2) and (2.3). There are thus precisely 
19 allowed vertices. The 19-vertex model is critical for imaginary values of X = -iy 
with y E [0, n). There is no need to shift the spectral parameter here so we identify 
v = U. 'Ib incorporate twisted boundary conditions, a seam is introduced by local 
operators exp(2i4S) = Diag(ezi+, 1,Czi4) which changes the vertex weights in column 
N to 

ezia4Rt ; ( U ) .  (3.2) 

The Hamiltonian limit of the 19-vertex model row transfer matrix is taken at 
vu = -iy or U = A as before. Up to normalization, this yields the spin-1 AXZ 
Hamiltonian 

H x u Z = ~ { r j - ~ - 2 ( c o s y -  1)(7*?+$7') 
N 

i - l  ,-. 
-2sinzy [$ -(.;)2+2(s;)Z]) 

7 = qqt, + sp;+, + S;s;+, 

71 = qq+l + 

where qY7* are spin-1 operators 

6 = S?S 
J I JC1 

(3.3) 

(3.4) 

and twisted boundary conditions have been imposed as in [28] 

sN+l = 3 ',+I f -,i2imsi - 1 '  (3.5) 

3.2. Belhe-ansalz equalions 

The eigenvalues A(v)  of the transfer matrix of the 19-vertex model are given (171 in 
terms of an auxiliary function L(v) by 

A(v) = L(v)L(v + yi) - sinh(v - y i )N  sinh(v + 2 ~ i ) ~ .  

L(v)q(v) = W-'O(V - +)q(v + yi) + W@(V + -&(v - Ti) 

(3.6) 

The function L(v)  is determined by a functional equation resembling (2.7), 

(3.7) 
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where 
m 

@(v) := (sinhv)N q(v)  := n s i n h ( v  - vi) 
j=l 

(3.8) 

as before. The phase factor w = e'+ corresponds to the twisted boundary conditions. 
These equations constitute the simplest example of a fusion hierarchy of functional 
equations. Such a hierarchy exists for each spin S and involves 2s auxiliary functions 
corresponding to 2s mutually commuting transfer matrices. lbgether with the Bethe 
ansatz, these equations close and therefore can be solved in principle for the eigen- 
values and finite-size corrections. For spin-1, A and L are the eigenvalues of the two 
commuting families of transfer matrices. 

-- -* - i - - 
(ii) 

Figure 2. Schematic depiction of the distribution of Bethe-ansalz numbers  in  the complex 
Y plane for the ground state of (i) the 6-vertex model and (ii) the 19-vertex model. Notice 
the deviation of the Bethe-ansalz numbers from the lines Im v = fr/2 in case (ii). 

In order to render A(v) and L(v) analytic the numbers vj have to satisfy 

p(vj)  = -1 j = 1,. . . , m (3.9) 

where the function p ( v )  is defined by 

1 @(v - iy)q(v + iy) 
u2 @(v + iy)q(v - iy) ' 

p(v) := - (3.10) 

We see from (3.6) that A(v) can be expressed in terms ofp(v) only 

The Bethe-ansatz equations (3.9) are again a set of nonlinear equations for the 
numbers vi. However, unlike for the 6-vertex model, the largest eigenvalue A(v)  
admits ni = N zeros or Bethe-ansatz numbers vj grouped in 2-strings, i.e. they are 
distributed close to the lines Im(v) = +7/2 such that each two zeros yi form a complex 
conjugate pair. The origin of the difficulties in calculating finite-sue corrections is 
the significant deviation of the Bethe-ansatz numbers from the lines Im(v) = fy /2  
for finite systems as shown in figure 2. Although in our calculations we never need 
to know the precise deviations, these deviations can nevertheless be calculated within 
this scheme as shown in appendix 2. For periodic boundary conditions this reproduces 
the results of !21! specialized to spin-1. 
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3.3. Nonlinear integral equations 

In order to accommodate the ground state we consider systems where the finite 
size N is even The largest eigenvalue of the transfer matrix is then given by N / 2  
complex conjugate pairs of Bethe-ansatz numbers close to the axes Im(v) = y/2 and 
Im(v) = -y/2. As an immediate consequence we note that the symmeny properties 
(2.12) still hold. We will be particularly interested in values of the crossing parameter 
for which y < x/2. Although the following analysis can be applied to this full range 
we will restrict ourselves to y < x/3 for the sake of a simple presentation. Our 
approach is essentially based upon the ANZ property of the functions @(v),  q ( v ) ,  L(v) ,  
and A(v) in the strips 

@(v) ANZ in 0 < Im(v) < x 

q(v )  

L(v) 

ANZ in - x + y/2 < Im(v) < -y/2 

ANZ in 0 < Im(v) < y (3.12) 

A(v)  ANZ in - y < Im(v) ,< 0 

where we have used the known bulk behaviour as a guide. As in the previous section 
these ANZ properties are exploited by setting up and solving functional relations for 
some suitable auxiliary functions 

(3.13) 

%(x)  := 1 + a(x) 

'B(x) := 1 + b(x) 

C(x)  := 1 + t(x) = %(x)/B(x) 

Here we have anticipated the bulk behaviour of a@), b(x), c(x) and have introduced 
functions a(.), b(x), c(x) accounting for the  corrections The variable x may be 
regarded as real. 

We first look at some relations among the auxiliary functions which follow simply 
from their definition. By inspection we obtain 

@ - -  1 @(x + ai  - 2ri) q(x + 2yi - Ti) 

c ( x )  u4 @(x +2yi) q(x - 2yi) 
- 

(3.14) 
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where we have used the si-periodicity to reduce the  arguments of @ ( v )  and q(v) to 
the analyticity strips (3.12). %king the second logarithmic derivative and applying the 
Fourier transform (2.15) we get 

F,.[Inp]”. U sinh [(rr/2 - 2y)k] 
sinh [(rr /Z - y)k] F , . [ I ~ Z ] ” - F , . [ I ~ C ]  = , 

From the relation 

(3.15) 

(3.16) 

we obtain 

F,. [ Ina ] ” - F,. [ In E ]  ” = F,. [In c ] ”  - F,. [ Inc]’’ - F,. [ Inp ] ”. (3.17) 

Similarly from 

(3.18) 

and its complex conjugate we find 

F,. [ lnb 1’’ = F,. [ Inc]” - F,. [ Inp]’’ + Fk [In 231” - Fk [ In  U]”  

Fk[ Inb]” = F,.[in? j ”  + F,. [ Inp j ”  + F,. [ InBJ - Fk ilnifij”. 
(3.19) 

- . , I  

We next observe that the function a(x)  continued to the complex plane enjoy; a 
non-trivial ANZ property 

a(v) ANZ in 0 < Im(v) < 7 (3.20) 

which follows from (3.12) and the relationship 

@(~)co th (m) /2y )~  q(v - 2yi) 
@(v - ri)@(v - 2yi) q(v  +Ti) a(v) = w (3.21) 

We therefore can calculate the Fourier transform of the second logarithmic derivative 
of a(v) using an integration path with imaginary part y and employing the identity 

a(x + yi) = 1/5(x). (3.22) 

Thus we derive 

e - ” ~ , . [ ~ n a ] ”  = - ~ ~ [ ~ n b ] ”  
e7kFk[Inii]”= -Fk[[Inb]“ 

(3.23) 

where the second equation is obtained from the first by complex conjugation. 
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We apply a similar reasoning to the function 

which also possesses a non-trivial ANZ propercy, 

ANZ in - y < Im(v) < 0 h(v) 

This is obvious from (3.12) and 

(3.25) 

h(v) = A(v)/  [@(v - yi)@(v + 2yi)l. (3.26) 

As before, we calculate the Fourier transform of the second logarithmic derivative of 
h in two different ways. Using the representations 

(3.27) 

h(x - yi) = c(x)  - W) (3.28) 
b(x )  

we derive two formulae for Fk [ Inh]". Equating these gives 

Fk [In%]" - Fk [ Inp]" = e-7k [Fk [ Inc]" + Fk [ In 131" - Fk [ Inb]"] . (3.29) 

The equations (3.15). (3.17). (3.19), (3.23) and (3.29) can be solved for Fk [ Inn]"  
etc. in terms of Fk[ln21]" etc. However, we observe that in order to proceed we 
only need expressions for Fk[lnac]" ,  Fk[ lnb /c ]"  and 3 , [ l n p ] "  

~ ~ , [ ~ n a c ] " =  3~ + wFk [ I n a l l l  - 1 - 2~ + 2v F ~ [ I ~ % ] "  

P ,, i 
1 + P  1 + P  

1 + P  1 + P  

P 1 !, 

(1 + PI2  

- ---3;,[In13] - -Fk[hB] 

(1 + P)Z 

(3.30) 
,, - 

(3.31) ,I 1 1 
Fk [ In b /c  ] = - -Fk [In 21'' - -Fk [In%]" + Fk [In 13 1'' 

~ ~ [ ~ n p ] "  = --F~[I~zI]"+ - ~ ~ [ ~ n l ( ]  (3.32) 
1 + P  1 + P  

where we have used the abbreviations 

(3.33) sinh((a/2 - 2yjkI 
sinh[(a/2 - y)k] ' 

p:=e-Tk v := 

Applying the inverse Fourier transform to (3.30) and (3.31) and integrating then gives 

27~U + F t In% + G t ln%+H * InB +nt In%+ - 
7T - 27 

(3.34) 
In b/c = R *  Inll+Rt In%+ In13 
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where we have introduced the functions 

(3.35) 

and E > 0 is infinitesimally small. The integration constants in (3.34) were determined 
through the asymptotics 

(3.36) o(*co) = wZ( 1 + W Z )  ru(*m) = 1 + wz + "4 

C ( f c o )  = w2 (3.38) 

(3.39) p(fOO) = - 1 
wz.  

In addition to (3.34) we note the subsidiary conditions II = 1 + a  and B = 1 + b. Now 
c is given in terms of a and b by C = 1 + c = %/B. Therefore it follows that (3.34) is 
a set of nonlinear integral equations for a and 6, exact for all finite system sizes N .  

21 summarize, we have used the ANZ properties of the fusion hierarchy in the 
case of spin-1 to set up nonlinear integral equations for suitably identified auxiliary 
functions a, b and c. This situation should generalize, in a straightforward way, to 
general spin values by introducing more auxiliary functions. 

3.4. Finue-size corrections lo the eigenvalue 

Once the solution of (3.34) is known the eigenvalue A(v) can be calculated from 
(3.26) 

A(x - yi) = @(x - 2yi)@(x + y i )h(x  - yi) (3.40) 

_..LL..L I ,  W.lla.l.0 .I._ I l . l . L * - l . l . .  W . . C . C L I " I I . ,  'IU" 0 L C I , l . L C U  L " Y  a,," 4 ",'I {J.'O, 'U," 

(3.41) 

Applying the inverse transform to (3.32) and integrating we express p in terms of 'U 
as 

(3.42) 

where the integration constants are zero. Then on inserting (3.42) into (3.41) and 
performing a contour integration, 

Gm .nh:rh L rnn+~:n. +hn fin:+- r ; ? ~  rnrmrr:nnr onA :r r n l n m r l  +- - n-rl 0, .,:- I7 10, ..-A 
111 

(3.28) 

h(x - yi) = p(x )U(x) .  

- -  
; i i p ( x j  = E * in - H * in % 

i Jm l n [ W - ~ ) l  dy Inh(x - yi) = - 
2y -m sinh[(r/y)@ - ic)] 

(3.43) 
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we derive an expression for the eigenvalue, 

In A(x - 7i) = In [@(x - 2yi)@(x + yi)] + - Re'nf'&)l dy (3.44) 
sinh[(a/y)(s -y + iz)] 

where the finite-size corrections are given exactly in terms of the !%function as in 
(2.39). 

3.5. Anatytic calculation of I /N corrections 

It is quite hopeless to look for analytic solutions of (3.34). However, it is again 
possible, following [22], to derive the leading finite-size corrections analytically without 
solving (3.34) explicitly. For this purpose we define appropriate limiting functions for 
a(x), b(x), and c ( x )  as for a(x) in (2.42). With these limiting functions and their 
complex conjugates, (3.34) can be put into a compact matrix notation, 

t J \ o J  

where the kernel K exhibits the important symmetry property (2.48). This is SUR- 
cient to apply the trick of the previous section. Multiplying the derivative of (3.45) 
with (lA,,/B,,a,,B*) and (3.45) with (lA;,lEL,G,,lB,), subtracting and lastly 
integrating we find 

t -, 

where the contributions of K cancel due to its symmetry as shown in appendix 1. 
Performing an integration by parts on the right-hand side of (3.461, collecting /c+ 
terms on the left-hand side and employing the relation lA,--IB, = IC, we then derive 
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27ri4 
(3.47) 

Proceeding now exactly as in (2.53). introducing the dilogarithmic function and using 
the asymptotia as given in (3.36)-(3.39) we obtain 

+ 2 L + ( w Z ) + 2 L t  (-+- 81742 
17 - 2y 

z 8Td2 
a - 2y 

= A  -- 

where we have used the functional relation (2.55) to evaluate the dilogarithms. 
Hence the final result for the eigenvalue A is given by 

ai  
6N 

Inh(x - iy) =- -Nf(x - iy) - - 

(3.48) 

(3.49) 

wheref denotes the bulk free energy. In this case the central charge is identified as 

(3.50) 

for 4 E (-7r/2,a/2) confirming the earlier result based on numerical solutions of the 
Bethe-ansatz equations for various values of y and 4 (281. 

4. Conclusion 

In conclusion, we remark that our key results are the  nonlinear integral equations 
(2.33) and (3.34) along with the results (2.39) and (3.44) for the largest eigenvalue of 
the transfer matrix. The equations derived hold for finite system sizes N, from which 
we obtained the exact results (2.58) and (3.50) for the central charge by exploiting 
the symmetry properties of the kernel. Both results, for S = f and S = 1, are in 
agreement with the more general formula 

4(s + ')++* 1 c = - [ 1 -  3s 
S +  1 n(r - B y )  
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obtained from direct numerical solution of the Bethe-ansatz equations for relatively 
small values of S [ZS]. In particular, for 4 = y = n/(m + 2S) this yields the minimal 
and superconformal series 

3 12 
c = - -  6 

c = l -  
m(m + 1) 2 m(m+2) '  

The result (1.1) is recovered for periodic boundaly conditions (4  = 0). As men- 
tioned in section 1, this result was first obtained via the known low-temperature ther- 
modynamics [4,18]. However, unlike the thermodynamic approach, which cannnot 
readily be extended to handle the excitation spectrum, we expect that the present 
calculations can be extended along the lines of [22] to derive the scaling dimensions, 
and thus the complete operator content, of the 19-vertex or Zamolodchikov-Fateev 
,..""I.. I., 1a.A ""1 ll,.,L,l""I .Y,,""IU apyq L" a,., .,.""I, a,.,In.',",u L" L L c a L I I , c , , ,  "J 

the previous methods using root densities [7,1&12]. In particular, we expect that 
our approach can be generalized to arbitrary sp in3  along the lines indicated in sub- 
section 3.3, as well as to other boundaly conditions and to models with additional 
surface terms (2P-311. 

1.nA-1 1, f - r r  A..- m n r h r v i c  Ph-mslA ""rr1.r . ~n . i  mnrlnl g m ~ n - h l n  +n r r o n t m n . . r  h.. 
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Appendix 1. Formulae used in the text 

Here we collect some formulae which are used in the main part of the paper. We 
first note the Fourier transforms 

k 
(Al.l) 

where the variable x is assumed to lie in the upper half plane close to  the real axis. 
For Re a > Re b > 0 we obtain 

n 1  
a sm(nb/a) ' 

d x = - .  (A1.2) 

Next we prove the cancellations of the symmetric kernel in our manipulations of 
the integral equations. This is due  to the identity 

W 

l i(x)(kij t $)'(x) dr = / /,!(x)(kij * $ ) ( x )  dr (A1.3) 
i J  -- 
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for a symmetric local kernel kg and functions 1; with constant asymptotics. In order 
to establish (A1.3) we perform the derivative on the left-hand side as (k, t $)'(x) = 
(kg * l,!)(x), obtaining 

(A1.4) 

Here we are allowed to interchange the order of integration. After interchanging 
the variables x, i with y, j and using the symmetly k..(v -1) = k,(x - y )  we find the 
right-hand side of (A1.3). I' 

Appendix 2. 2-string deviations 

In this appendix we derive the asymptotic deviation of the Bethe-ansatz numbers 
from the 2-string picture. For this purpose we determine the large N behaviour of 
the functions a@), b(x) and c(x). From (3.34) and limN-w Ql(x) = lim,,,-w B(x) = 
IimN-- C(x) = 1 we have 

Inacrr2Nlntanh 

In b/c Y 0 

These relations can he rewritten forp(x) and p ( x  - iy), 

P ( 4  = 1 
N 

p(x - iy) rr &exp (- 2) (coth g) 
The large N behaviour of a(v )  is now easily determined to he 

Let vi be a Bethe-ansatz number in the lower half plane, then vj + yi lies in the 
analyticity strip of a(v ) .  Using l/p(l? + yi) = 0 and the Bethe-ansatz condition 
p ( v j )  = -1 we find 

a(vj + yi) = - [ tanh ( ? ) I N .  
Combining the last two equations yields a convenient condition equivalent to the 
Bethe ansatz 

[tanh (z)] = -&exp (3) )r - 21 
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%king logarithms we find 

where consecutive numbers vj are labelled by consecutive integers -N/2 6 j < 0. 
The second and the third terms on the right-hand side give rise, respectively, to a 
deviation from the 2-string formation and a shift of the Bethe-ansatz numbers due 
to the twist 4. Suppose both terms were absent. We would then have to deal with 
numbers vy subject to 

N In [,an, (2 )] = (2j f 1)ai 

For large N, we would then have 

A - 27 

N( In [tanh( E)]}'(V!+~ - v,") = 2ai. 

In the thermodynamic limit, the Bethe-ansatz numbers are densely distributed 
along the line Im(v) = -712. Define the density function 

1 
U ( V )  := lim 

N-m N ( V ~ + ,  - vy) 

Then the deviation from the vu distribution is given by AV := vj - vy, for which we 
find 

ln2.  4 0 v. - v. 
N o A v =  ' ' 

vy+,-vy - 4a '+2()7-27) .  
(A2.10) 

The deviation of the Bethe-ansatz numbers in the upper half plane is described by 
an analogous formula with a positive imaginary part. This is the generalization of the 
result obtained in (211 and (231 for pcriodic boundary conditions (d = 0). 

References 

[I]  Belavin A A, Polyakw A M and Zamoladchikav A B 1984 NucL Phys. B 241 333 
121 Friedan D. Qiu 2 and Shenker S 1984 P l w .  Rev. Len. 52 1575 
[3j Cardy 1 L 1986 NucL Phys. B 270 186 

' 

Bldte H W 1. Card" J L and Nightingale M P 1986 Phys. Rev. Leu. 56 742 
[4] Ameck I 19% Physr Rev. Leu. 5a74h" 
[SI VOn Gehlen G, Riftenberg V and Ruegg H 1986 J, Phys. A: Mad. Gen. 19 I07 
[6] Kim D and Pearce P A 1987 J. Phys. A: Moll:. (?en 20 LA51 
171 de Vega H J and Woynarovich F 1985 Nucl Phja B 251 439 



Central charges of vertex ntodels 3133 

Lieb E H and WU F Y 1972 Phase Pamilions and Critical Phenomoio voI 1, ed C Domb and 

Yang C N and Yang C P 1966 Phys. Reu 150 321 
des CloiZeawt J and Gaudin M 1966 1. Morh. Phys. 7 1384 
Woynarmich F and Ekklc H P 1987 1. Phys. A: Morh Gen. 20 L97 
Hamer C 1, Quispel G R W and Batchelor M T 1987 1. Phys. A: Math Gem 20 5677 
Kamki M 1988 NucL Phys. B 3W 473 
Eckle H-P and Hamer C J 1991 1. Phys. A: Moth Gm 24 191 
Zamolcdchikw A B and Faleev V 1980 Sov. I. NucL Phys. 32 298 
Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 L a  Marh Phys. 5 393 
nkhlajan L A 1982 Phys. L ~ I L  87A 479 
Babujian H M 1983 NucL Phys. B 215 317 
Babujian H M and lbelick A M 1986 NucL Phys. B 265 24 
Kirillw A N and Reshelikhin N Yu 1987 1. Phys, A: Mnih. Gen. 20 IS65 
Bazhanov V V and Reshelikhin N Yu 1989 In: 1. Mod Phys. A 4 11542 
Johannesson H 1988 1. Phys A: Morh Gen. 21 U511 
Alcaraz F C and Martins M J 1988 1. Phys. A; Moth. Gor 21 4397 
Alileck I, Gepner U, Schulz H J and Ziman T 1989 L PhJx A: Moth Gar 22 511 
Dorfel B-D 1989 1. Phys. A: Mach. Gem 22 U S 1  
Avdeev L V 1990 1. Phys. A: Morh Gen. U US8 
Alcaraz F C and Martins M J 1988 1. Phys. A: Mnlh. Gen. 22 1829 
Frahm H, Yu N-C and Fowler M 1990 NucL Phys. B 336 396 
Fmhm H and Yu N-C 19901. Phys. A: Mah. Gm 23 2115 
de Vega H J and Woynarovich F 1990 1. Phys. A: Math Gen. 23 I613 
Pearce P A and Kliimper A 1991 Phys. Reu Lett 66 974 
Kliimper A and Pearce P A 1991 1. Slat Phys. in p r w  
K l h p e r  A and Balchelor M T 1990 I. Phys A: Marh. Gen. 23 L189 
Alcaraz F C, Barber M N and Batchelor M T 1988 Ann. Phys., NY 182 280 
Baler R J 1982 Erocrly Solved Models in S~olisricol Mechanics (London: Academic) 
Kliimper A and Zittartz J 1988 Z. Phys. B 71 4% 
L m i n  L 1958 Dilogarilhm md Associated Funczionr (London: MacDonald) 
Alcaraz F C and Martins M 1 1990 I. Phys. A: Morh. Got. 23 1439 
Mezincercu L. Nepmechie R I and Rillenberg V 1990 Phys. Lelt. 147A 70 
Pasquier V and Saleur H 1990 NucL Phys. B 330 523 
Martins M J 1991 Phys. L m  151A 519 

M S Green (London: Academic) p 331 


